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ABSTRACT

This paper first generalizes a characterization of polyhedral sets
having least elements, which is obtained by Cottle and Veinott [6], to the
situation which Euélidean space is partially ordered by some general cone
ordering (rather than the usual ordering). We then use this generalization
to establish the following characterization of the ciass ¢ of matrices
(C arises as a generalizatioq of the class of Z-matrices, see [4], [13],
[14]): M e C if and only if for every vector q for which the linear com-
plementarity problem (q,M) is feasible, the problem (q,M) has a solution
which is the least element of the feasible set of (q,M) with respect to a
cone ordering induced by some simplicial cone. This latter result generalizes
the characterizations of K- and Z-matrices obtained by Cottle and Veinott

[6] and Tamir [21] respectively.
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EXPLANATION

The linear complementarity problem is nowadays an extremely important
subject in mathematical programming. Its wide applications can be found in
such diverse areas as optimization, economics, structural engineering, finance,
free boundary value problems and optimal stopping. The area of large-scale
linear complementarity problems has in recent years received an increasing
amount of interest because of its potential usefulness in solving discretized
partial differential equations. A fundamental problem arising here is the
solution of these large-scale problems. Many of the currently available linear
complementarity algorithms are either not applicable or not suitable to solve
large-scale problems because of limited computer storage and expenses.
Recently, Professor Mangasarian has proposed solving a class of large-scale
linear complementarity problems as linear programs. The purpose of this paper
is to provide a characterization of this class of problems in terms of some

geometric notions in Euclidean space.




ON CONE ORDERINGS AND THE LINEAR
COMPLEMENTARITY PROBLEM

Jong-Shi Pang

1. INTRODUCTION

Recently, there are a number of papers in the literature which are concerned with
characterizing polyhedral sets having least elements [6], with characterizing certain
classes of matrices in terms of linear complementarity problems having least-element solu-
tions [6], [16], [21], and with solving linear complementarity problems as linear programs
[41, [s), [13]), [14), [15], [18). 1In fact, these three subjects are very closely related
to each other. Among those papers mentioned above, the first one [6] seems to be the prime
motivation for investigating the various relationships betwecen the three theories. The
essential result obtained in that paper is a thcorem which characterizes polyhedral sets
having least elcments with respect to the usual ordering of Euclidean space. As an ap-
plication of this characterization, the authors of the paper derived a charactecrization of
the class of K-matrices in terms of linear complementarity problems having least-element
solutions. It thus follows that lincar complementarity problems with K-matrices can be
solved as linear programs*. The characterization of K-matrices was later extended to 2-
matrices by Tamir [21). Therefore, linear complementarity problems with Z-matrices can
also be solved as linear programs.

An aéplication exploiting the fact that linecar complementarity problems with 2Z-
matrices have least-element solutions has been described in [16]. Seec also [17). 1In [16],
the author studied a class of large-scale linear complementarity problems arising from
quadratic programs with upper and lower bounds on the variables and with no other con-
straints. These quadratic programs have many applications in various areas. See [3].

We [16) presented a fast and efficient algorithm for this class of linear complementarity

* See [4] for a more precise description of this concept. Throughout the paper, the
phrase "solving linear complementarity problems as linear programs" has the meaning as
described in [4), [13), [14).

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024 and the National
Science Foundation under Grant No. MCS75-17385.




problems which makes use of an efficient algorithm [2] to find the least-element solution
of a linear complementarity problem with a Z-matrix.

Mangasarian, in two recent papers [13], [14], introduced certain new classes of
matrices for which he showed that the corresponding linear complementarity problems can be
solved as linear programs. His method of derivation has nothing to do with least elements.
In [14]), R. W. Cottle and the author summarized the results in Mangasarian's two papers by
showing that all the classes of matrices studied in the paper - that are seemingly quite dif-
ferent - are in fact, subclasses of a large class of matrices, which we have denoted by C .
(Incidentally, C includes the classes of 2- and K-matrices.) Moreover, we have shown that
Mangasarian's results can indeed be derived via Cottle and Veinott's theory of polyhedral
sets having least elements, thereby tightening up the connection between this latter theory
and that of solving linear complementarity problems as linear programs.

It is natural to ask whether matrices in C can in fact be characterized in terms of
linear complementarity problems having least-element solutions. That this might be pos-
sible is suggested by the fact that it is possible for the classes of Z- and K-matrices.
Our purposc in this paper is to provide a positive answer to this question. We would like

to mention that ageneralization of ¢ has been studied in [5] (least-element aspect) and in

-

[15) (non-least-element aspect). Moreover, it has been shown [18] that ~ is closecly re-
lated to the well-known class ¥ of matrices whose characterization has long been an open
problem in the theory of the linear complementarity problem but has recently been established
in [18].

In order to characterize (C , we need to consider Euclidean space as being partially
ordered by some general partial orderings (rather than just the usual ordering that is
always implicitly implied in all the known characterizations). These partial orderings
are induced by pointed cones and are thus called cone orderings. They certainly include
the usual ordering as a special case. We shall develop a theory of polyhedral sets having
elements that are least with respect to these cone orderings. The theory is an extension
of that obtained in [6). The kecy characterization theorem is described in terms of a gen-
eralized Leontief property presented in Saigal [19] and will be used to characterize ¢ in
the manner described in the last paragraph. As in [(], we do not address the question of

the existence of the lcast elements. Instecad, we refer the interested reader to [17]).

-
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The plan of this paper is the following. The next section is a summary of back-
ground materials. It contains two parts. In the first part, we review some basic defini-
tions and fix our notations. In the second part, we state some known results that are im-
portant to the development of our theory. 1In the third section, we consider R" as being
partially ordered by some cone ordering and develop a theory of polyhedral sets having
least elements. We include a theorem characterizing a (strictly) isotone linear function
on Rn under a cone ordering. This theorem is believed to be new and is related to the
problem of finding the least element, provided that it exists. 1In the fourth and last

section, we establish the promised characterization of C .
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2. BACKGROUND

2.1. Basic Definitions and Notations. Throughout this paper, R: will denote the non-

. X
negative orthant of Euclidean n-space Rn, and R" , will denote the class of real nX %

matrices. We denote the i-th column (row) of a matrix A ¢ Rnxl by A'i (Ai')' By ei

we denote the i-th unit vector, i.e. the vector whose components are all zero exceot the

< 4 . n : . ;
i-th component which is one. If S € R, we denote the interior of S by int(S) .

For a given vector q ¢ R" and matrix M e Ran' we denote the linear complementarity

e n i .
problem of finding a vector x € R+ satisfying

q+ M >0 and xT(q + Mx) = 0

by the pair (q,M) . Note that the nonnegativity of the vectors x and (q + Mx) are
meant componentwise. By the feasiblce set for the probiom (q,M), we mean the polyhedral
set

X(q,M) = {x ¢ R:: g+ Mx > 0} .

The problem (q,M) is said to be feasible if X(q,M) # ¢ .
3 nXn 3 il A A :
A matrix M e R is said to be a Z-matrix if it has nonpositive off~diagonal
s 2 nXn v . 7 A n
entries. The Z-matrix M ¢ R is said to be a K-matrix if there is a vector x € R+
such that Mx > 0 (componentwise). Properties of these two classcs of matrices have been

surveyed in [8). Let A ¢ RnXl .

It is said to be Leontief if it has at most onc positive
element in each column and there is a vector x ¢ Rf such that Ax > 0 (componentwise).
If A is Leontief, then the system

Ax =b >0, x>0

is called a Leontief substitution system. Properties and applications of Leontief

matrices and of the associated Leontief substitution systems are well recognized in the
literature. See [7], [22]). It is clear that K-matrices are Leontief; and conversely,

g . ; s 5 : 2
square Leontief matrices with positive diagonal elements are K-matrices. For A ¢ Rnx

with full row rank, we say an nXn submatrix B is a basis if it is nonsingular.

A partial ordering < (seec [1]) on a set S is a binary relation on S, which

satisfies for all x,y and z ¢ S, the following three axioms:

(P1) x < x (reflexivity);

-4~




(P2) x <y and y< z imply x < z (transitivity);

(P3) x<y and y< x imply x =y (antisymmetry).

The set S is said to be partially ordered (by < ) or a poset if < is a partial ordering

£ on S . We denote the poset S together with the partial ordering < by the pair (S, < ).

k It is clear that every subset of a poset is a poset with the induced ordering. If x and
Y are elements in a poset S, x< y and x ¥ y, then we write x< y .

i Example. The usual ordering < of R" is defined as follows: For x,y € Rp, x <y if ! Ji
& 4 and only if xi f_yi for every i . It is trivial to show that this is a partial ordering. ]
?' ; Later in this section, the usual ordering of R" will be generalized. For this particular
} ,4 ordering, we write x < y to mean X, < yi for every i . This is not to be confused
;AN! with < which is used for other orderings and has a weaker meaning.

i Let T be a subset of the poset (S, <) . An element t* € T is a least element

; of T (with respect to or under < ) if t* <t for every t € T . The least element of 3

a poset, if it exists, must be unique. This follows immediately from its definition and
the antisymmetry of the partial ordering.
Let (S, <) and (S', <') bec posets. A mapping £f: S S' is said to be isotone

if x,y ¢S and x<y imply f(x) <' f(y) . An isotone mapping is strict if x< y ]

implies f(x) <' f(y) . When S' is the real line and < is the usual ordering < of

scalars, we say that f is a (strictly) isotone real-valued function if the mapping

f: (s, <) » (R, X) is (strictly) isotone.
n
We review a few concepts about cones in Euclidean space [20]. A subset C of R

is called a cone if it satisfies the following three conditions:

(Cl) 0 € C;
(C2) Ax ¢ C for every A € R+ and x € C;

(C3) x+yecC for x,yeC.

The cone C is said to be pointed if x ¢ C and -x € C imply x = 0. It is finitely v
- :
gencrated if there exists G ¢ Rnxm such that C = {x ¢ R": x = Gy for some y € R+} . 1

n
In this case, we denote C by pos(G) . A cone C is polyhedral if there exists Fe Rmx

such that C = {x ¢ Rn: Fx > 0} . A cone C is simplicial if C = pos (X)

for some X € Rnx" and X is nonsingular.

«fa




Note that conditions (C2) and (C3) together imply that cones are convex. It is well-
known (see [20]) that a cone is finitely generated if and only if it is polyhedral. For

s n A -
an arbitrary subset S ¢ R, we define its polar cone

T
s ={ycr" xy > 0 for every x ¢ S}.

*
Obviously, S is a nonempty closed cone. The next proposition can easily be proved (see

[20]). It gives an explicit formula for the polar cone of a finitely generated cone.

Proposition 2.1. Let Ge RnXm . Then

*
pos(G) = {x ¢ R": x'G SO

The following observation is important. Namely, if the matrix G ¢ Rnxm has linearly
independent columns, then the cone pos(G) is pointed and its polar cone pos(G)* must have
a nonempty interior. This latter property is an immediate consequence of a standard
alternative theorem on the solvability of a homogeneous system of linear equations. See
[20] e¢.g. 1In particular, a simplicial cone is pointed and its polar cone has a noncmpty

interior.

We now return to orderings. The usual ordering < of R" is defined "component-
wise" and determines a "cone of nonnegativity" € ='{x ¢ R": 0 S x} which, in this case,
is precisly the nonnegative orthant R: . This ordering is generalized in the following
manncr. (See Kransnoselski [12).) Let C be an arbitrary pointed cone in R" . The
cone ordering <C (induced by the pointed cone C ) is defined as follows: for x,ye€ Rn ’
x <C y if and only if y - x ¢ C . It can readily be verified that this is a partial
ordering. Indeed, axiom (P1) follows from (Cl), (P2) from (C3) and (P3) from the point-
edness of C . Under this cone ordering <(:, C becomes the cone of nonnegativity, i.e.
c={xe Rn: 0 <C x} . It is clear that the cone ordering induced by the nonnegative
orthant is preciscly the usual ordering. If C is the polyhedral cone {x ¢ R": Fx > o}
where F ¢ Ryxn and the columns of F are linearly independent (in fact, the linear in-
dependence is equivalent to the pointedness of C ), then the cone ordering <C can be
viewed as a replica of the usual ordering as applicd to a transformed image of R . Ine

deed, consider the linear transformation L: R" » R™ deined by L(x) = Fx . Then the

-be




Theorem 2.4. (Tamir [21]) Let M e R . The following are equivalent:

ordering <C is precisely the "inverse image" of the usual ordering on the image space
L(Rn); in other words, x <c y if and only if L(x) < L(y) .
The idea of incorporating cone orderings in the study of complementarity problems

is no new subject at all. In fact, the generalized complementarity problem which was in-

troduced by Habetler and Price [9] and later refined by Karamardian [10) is defined by
means of a cone ordering. We shall not discuss this latter problem further but refer the
interested reader to the paper [10].

2.2. Known Results. In this subsection, we review some known results that are of
fundamental importance in this paper. In each of the four theorems stated below, the word
"least" is meant "least under the usual ordering", i.e. "least componentwise". The first

theorem characterizes polyhedral sets having least elements.

Theorem 2.2. (Cottle and Veinott [6]) Let A € szn and xb = {x e R": ax = b} for j
L g : |
b € R . The following are equivalent: |
|
(2.1a) xb has a least element for each b such that xb is nonempty. ]
L |

(2.1b) There is a basis B in AT for which B lc > 0 for some c > 0 and each such

basis has a nonnegative inverse (entrywisec).

It was noted in [6] that xb is nonempty for all b if and only if there is an x
such that Ax > 0 . Applying Theorem 2.2 to the linear complementarity problem (g,M) , =

we obtain the following characterization of K-matrices.

Theorem 2.3. (Cottle and Veinott [6]) Let M ¢ Ran . The following are equivalent:

(2.2a) M is a K-matrix.
(2.2b) For each q ¢ Rn, X(q,M) has a least element X and x is the unique element
in X(q,M) satisfying x T(q +Mx) =0 .
A similar characterization of Z-matrices is given by

nxn

(2.3a) M is a Z-matrix.

(2.3b) For each q € R" such that X(q,M) # ¢ , X(qg,M) has a least element x and

x satisfies ;T(q +Mx) =0 .
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The phrase "linear complementarity problems having least-element solutions" used in
the introduction, originates from these last two theorems. It is an abbreviation
for "line;r complementarity problems which have solutions that can be characterized as the
least elements of the feasible sets of the problems."

The class C of matrices consists of those real nXn matrices M which, together

with Z2-matrices X and Y, satisfy the following two conditions;

(M1) MX = Y
(M2) rx + sTY > 0 for some r,s ¢ R: i}
Proposition 2.5. (Cottle and Pang [4]) Let Me(C . Let X and Y be Z-matrices

satisfying conditions (M1) and (M2). Then

(2.4a) X 1is nonsingular
B T 5 3 .
(2.4b) (X', YY) is a Leontief matrix.
Theorem 2.6. (Cottle and Pang [4]) Tet M, X and Y satisfy the assumptions in Propo-

sition 2.5. Supposce that the lincar complementarity problem (q,M) 1is feasible. Then

the polyhedral set

(2.5) Vq = {vc ™ Xv >0, q+Yv> 0}

x|
]

has a least element v . Furthermore the vector Xv solves the problem (gq,M) and

X can be obtained by solving the linear program

gy T
(2.6) minimize p x subject to x € X(q,M)

where p satisfies pTX F Q.

e e r——————
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3. POLYHEDRAL SETS HAVING LEAST ELEMENTS

- n s : -
From now on, we consider R as being partially ordered by some general partial
ordering. We first state a proposition which shows how the least element of a set S S_Rn
can be obtained, provided that it exists. The proof of the proposition is straightforward

and thus omitted.

Proposition 3.1. Let < be a partial ordering on Rn . Let x be the least element of

a set S ¢ (RP, < ). Then X is a solution to the minimization problem
(3.1) minimize f(x) subject to x € S

for every isotone real-valued function f defined on S . Fu: ~hermore, X is the unique
solution if f is strictly isotone.

The significance of the proposition is that it suggests a constructive (though
sometimes not too effective) approach to find the least element whenever it exists. If it
happens that S is a polyhedral set in Rn, and if f 1is chosen to be linear, then
problem (3.1) reduces to a linear program which of course, can be solved by the simplex
method of linear programming.

In what follows, we present a representation theorem for linear (strictly) isotone
real-valued function defined on (Rn, <C) where C is some finitely generated pointed

cone.

Xm

Theorem 3.2. Let G ¢ Rn have linearly independent columns and let C = pos(G)

Consider the poset ®", < C) . A linear function f£: R® + R is (strictly) isotone if

and only if there exists a vector p ¢ (int C*) C* such that f(x) = pTx for every

X e R .

Proof : We prove only the case of strict isotonicity. Proposition 2.1 implies that
int ¢ = {x e R": x"G > 0} .

If f(x) = pTx for some p € int C. and for every x € Rh, then

X &k Py x=GCr for some I ¢ RT \ {0}

= £f(y) - £(x) = pT(y - x) = (pTG)r >0 .

-9-
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x <c y = f(x) < f(y)

Hence f is strictly isotone. Conversely, suppose that f is strictly isotone. The
linearity of £ implies the existence of a vector p ¢ R" such that f(x) = pTx for

n : ; S *
every x € R . It remains to verify peint C . Let r ¢ RT \ {0} . Then 0 <. Gr

c
because G has linearly independent columns. The strict isotonicity of £ therefore

i 3 4 Y
implies that £(Gr) = (p G)r > 0 . In other words, we have proved the implication
r e RT \ {o} = (pTG)r >0

3 ] 5 T *
which is clearly equivalent to p G > 0 . Therefore p ¢ int C . This completes the
proof of the theorem.
Combining Theorem 3.2 with Propositicn 3.1, we obtain

Corollary 3.3. Let C be given in Theorem 3.2. Let x be the least element of S <

n

(R, <C) . Then x is a solution to the minimization problem
SR T X
minimize p X subject to x ¢ S
* i *
for every p ¢ C . Furthermore, it is the unique solution if p ¢ int C
Remark . In both Theorem 3.2 and Corollary 3.3, the cone C is not required to be
simplicial.

The conclusion in Theorem 2.6 about how the vector x can be obtained is an im-
mediate consequence of Corollary 3.3 because as we shall see later, X is indecd the
least element of the feasible set X(q,M) under the cone order < pos (X)

In order tocharacterize polyhedral sets having least elements with respect to cone

orderings, we introduce the following two definitions.

Definition 3.4. (Saigal [19]) Let C be a convex set in R" with int C AR
X
A€ Rn - with full row rank. We say that A has the generalized Leontief property

with respect to C if the following two conditions are satisfiecd:
(3.2a) there is a basis B of A such that C ¢ pos(B) ;

(3.2b) for each basis B of A such that int C n pos(B) # ¢ , we have C c pos(B)

-10-
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We define L(C) to be the set of all matrices which have the generalized Leontief proper-

ty with respect to C .

Definition 3.5. (Saigal [19])) We say that a matrix A € L(C) is hidden Leontief if

there is a nonsingular matrix D such that DA is Leontief and C ¢ pos(D-l) 5

Motivation to study the generalized Leontief property and hidden Leontief matrices
is due to the fact that “"there are constraint sets {x € R:: Ax = b} that do not appear
to be Leontief substitution systems but can be shown to be equivalent to such systems".
Various characterizations of hidden Leontief matrices have been obtained by Saigal [19].
See also [11]. An application which exploits hidden Leontief properties is given in [11].
If A is hidden Leontief, then the system

Ax = b, x>0

is called a hidden Leontief substitution system.

Theorem 3.6, Let C be a simplicial cone in R" . Consider (Rn, <c) . Let

Ar W™ el - R {x ¢ R": Ax >b} for be RQ . Then the following are equiv-
alent:

(3.3a) xb has a least element for each b such that Xb #¢ .

*
(3.3) AT € L(C)
2
Proof: For each b ¢ R, let
n
Yb={ch: AXy > b}

Xn

wher® C = pos(X) with X ¢ R" and nonsingular. It is clear that X is nonempty

b
if and only if Yb is so; and x is the least element of xb with respect to < & if

and only if ; = X—l; is the least element of Yb with respect to the usual ordering.

Hence, (3.3a) is equivalent to

(3.4) for each b such that Yb £ 9, Y has a least element with respect to the usual

b
ordering.

According to Theorem 2.2, (3.4) is equivalent to

(3.5) there is a basis B' in (AX)T for which (B')-lc >0 for some c > 0 and each

such basis B' has a nonnegative inverse.

-11-
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Every basis B' of (AX)T has the form B' = (BX)  where BT is a basis of AT .

r & « L G 4 T B, .
The converse is also true, i.e., if B is a basis of A", then B' = (BX) is a basis

of (AX)T . Therefore, (3.5) is equivalent to

T
(3.6) there is a basis BT of AT for which (B d)Tx >0 for some d > 0 and each
T -
such basis B’ satisfies [c > 0 = (BX) 2 c >0} .

Noting that

T T

(BX) ‘¢ 200 X ¢ = BTH for some 4 ¢ R:

"

and that C* = POS(X—P). we conclude readily that (3.6) is indeed equivalent to (3.3b).
This complectes the proof of the theorem.

Theorem 3.6 characterizes polyhedral sets having least elements with respect to
partial orderings induced by simplicial cones. It gsnéralizes Theorem 2.2. It should
be pointed out that the requirement that the cone C be simplicial is essential in order
for the one-to-cne correspondence between clements in Xb and Y and also for the

b

. . 3y 5 g L
relationship between basis of (AX)T and of A to be valid. If C 1is merely finitely

generated and pointed, we have the following result.
o X : :
Proposition 3.7. Let G ¢ s have linearly independent columns and C = pos(G) .
: n 2Xn T Co* y . v
Consider (R , <C) o FBE Bre R . If A € L{c) and is hidden Leontief, then

(3.3a) holds.

Proof: MAccording to a property of hidden Leontief matrices [19], there exists a simplicial
n T * * *
cone S = {x ¢ R Dx > 0} such that A € L(S) and C ©s . Since § = (5 ) (see
*
[20]), it follows from Theorem 3.6 that (3.3a) holds with respect to S . Therefore,

* * *
(3.3a) must hold with respect to C because S € (C) = C . This completes the proof

of the proposition.

s




4. CHARACTERIZATION OF C

In this section, we use the results developed in the last section to establish a
characterization of C in terms of linear complementarity problems having least-element
solutions. Before proving the main theorem, we state and prove the following proposition
which describes a relationship between matrices in ¢ and hidden Leontief matrices. The
proposition generalizes the fact that if M is a Z-matrix, then the matrix (I, MT) is

Leontief.’

Xn

*
Proposition 4.1. Let M e Rn n ¢ . Then there exists a simplicial cone C such

*
that the matrix AT = (Bl MT) € L(C ) and is hidden Leontief.

Proof: Let X and Y be Z-matrices satisfying conditions (Ml) and (M2) . ObserQe

that (M2) can be written as

(rT + sTM)X > 0 for some 1r,s € R2 .

Let C = pos(X) . Then C. = pos(x_T) is simplicial. According to Theorem 2.6,

for every vector gq such that X(q,M) # ¢, the polyhedral set VvV

defined by (2.5) has a least element Vv with respect to the usual ordering. As mentioned
in Theorem 3.6, Vv is the least element of Vq with respect to the usual ordering if and
only if X = Xv is the least eclement of X(q,M) with respect to the cone ordering <c:.
Thercfore by Theorem 3.6, we conclude that AT € i(c‘) . It remains to verify that K

is hidden Leontief. Noting that (XT, YT) = XTAT and letting D = xT, we deduce, by
(2.4b), that DAT is Leontief. Finally, it is clear that c. = pos(D—l) . This completes

the proof of the proposition.

Remark : The matrix AT = (I,MT) arises in the linear programming formulation of the

linear complementarity problem (q,M) with M €C . 1Indeed, the dual of the linear pro-

gram (2.6) is given by:

T
minimize qu subject to p-My >0, y>0
or equivalently,

o, v T v, _ vy > 0
minimize (q) (y) subject to A (y) P (y) >0.

-]13-
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Combining Proposition 4.1 andTheorem 2.6, we conclude that if M ¢ and if the linear comple-
mentarity problem (q,M) is feasible, then (q,M) has a solution which can be obtained

by solving a linear program whose dual has a constraint set defined by a hidden Leontief

substitution system.

Theorem 4.2. Let M ¢ Rnx " . The following are equivalent:
(4.1a) MeC .
(4.1b) There exists a simplicial cone C, such that for each q € Rn for which

X(q,M) # ¢, X(q,M) has a least element x with respect to <« c

and x satisfies x T(q + Mx) =0

Proof: (4.1a) = (4.1b). This follows immediately from Theorem 2.6 and the proof of
Proposition 4.1.

(4.1b) = (4.1a) . Let C = pos(X) where X ¢ Rnx T s nonsingular but not neces-

sarily a Z-matrix. Let Y = MX . According to the assumption, we deduce that for every
vector q for which the set Vq (defined by (2.5)) is nonempty, it has a least element
- - _ -— - T —

v(= X x) with respect to the usual ordering and v satisfies (Xv) (q + Yv) =0 .

Let k be an index in {1,...,n} . Choose q = ek - Yak where ak = X-lek Then

k - —-—
a € Vq . Therefore Vq contains an element vk _i ak . Moreover, vk # ak . Definec
k k = g e g
Vv =g -9 ; then v 1s a non-vanishing vector. For i # k, we have
(4.2a) IR T e S
je ie je o
and
(4.2b) Yo aY S o
2 e i
-k
= -Y, v < ¥
q i 0

Now if we define the matrix W = (vl,...,vn) where vk are the vectors defined above,

then clearly, X' = XW and Y' = YW are Z-matrices by (4.2). Moreover MX' = Y' . It

; ¢ T
remains to verify that there exist vectors r and s in RZ such that r X' + sTY' >0 .

*
By Theorem 3.6, it follows that AT = (I, MT) € L(C) . Therefore, there exists a basis

* *
BT of AT such that € ¢ pos(BT) . This implies, by the fact that int C #¥ ¢ .

(tT B)X >0 for some t € RO .

~14-
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If we define the vectors r = (ri) and s = (si)

t. if ei = (BT) . for some j
J *)

X, =

(o} otherwise

E, i wh - (BT).J_ for sme j
s, =
i

0 otherwise,

then clearly r, s € 3? and

X +sTY = (£T + sTMX = (¢TB)X > 0 .

Finally, we have

T,
rTx' + sTY' = (r'X + sTY)w >0

because each column of W is non-vanishing and W > 0 . This shows that M e C and
completes the proof of the theorem.

The above theorem gencralizes both Theorems 2.3 and 2.4. It should be emphasized
that in (4.1b), the cone C is not required to be induced by a Z-matrix. Moreover, it is
worth pointing out that there exist matrices M e C whic¢h satisfy the defining conditions
(Ml1) and (M2) for some matrices X and Y which are not both Z-matrices. An example is

given by the following.

Example. Consider M =

(3 - } " ?’ —1) . Clearly
2

0 _1) . Let X = (_/ 1) and Y = ( V. -
MX = Y and (M2) is satisfied because X 1is a K-matrix. M € ¢ because

3 =1

o =3 *

Observe that Y is not a Z2-matrix.
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